Fast Parallel Computation of Hermite and Smith Forms of Polynomial Matrices*
نویسندگان
چکیده
Boolean circuits of polynomial size and poly-logarithmic depth are given for computing the Hermite and Smith normal forms of polynomial matrices over finite fields and the field of rational numbers. The circuits for the Smith normal form computation are probabilistic ones and also determine very efficient sequential algorithms. Furthermore, we give a polynomial-time deterministic sequential algorithm for the Smith normal form over the rationals. The Smith normal form algorithms are applied to the Rational canonical form of matrices over finite fields and the field of rational numbers.
منابع مشابه
Parallel Algorithms for Matrix Normal Forms
Here we offer a new randomized parallel algorithm that determines the Smith normal form of a matrix with entries being univariate polynomials with coefficients in an arbitrary field. The algorithm has two important advantages over our previous one: the multipliers relating the Smith form to the input matrix are computed, and the algorithm is probabilistic of Las Vegas type, i.e., always finds t...
متن کاملEfficient parallelizations of Hermite and Smith normal form algorithms
Hermite and Smith normal form are important forms of matrices used in linear algebra. These terms have many applications in group theory and number theory. As the entries of the matrix and of its corresponding transformation matrices can explode during the computation, it is a very difficult problem to compute the Hermite and Smith normal form of large dense matrices. The main problems of the c...
متن کاملComputing Popov and Hermite forms of rectangular polynomial matrices
We consider the computation of two normal forms for matrices over the univariate polynomials: the Popov form and the Hermite form. For matrices which are square and nonsingular, deterministic algorithms with satisfactory cost bounds are known. Here, we present deterministic, fast algorithms for rectangular input matrices. The obtained cost bound for the Popov form matches the previous best know...
متن کاملA Note to Hermite and Smith Normal Form Computation
Hermite normal form and Smith normal form are canonic forms of integral matrices with respect to congruence produced by multiplication with right unimodular matrix resp. by multiplication with left and right unimodular matrix simultaneously. This lower-diagonal resp. diagonal form has many applications in various elds. Unfortunately, the computation of them is extremely resource consuming. The ...
متن کاملEfficient implementation of low time complexity and pipelined bit-parallel polynomial basis multiplier over binary finite fields
This paper presents two efficient implementations of fast and pipelined bit-parallel polynomial basis multipliers over GF (2m) by irreducible pentanomials and trinomials. The architecture of the first multiplier is based on a parallel and independent computation of powers of the polynomial variable. In the second structure only even powers of the polynomial variable are used. The par...
متن کامل